

Algebraic Geometry (WS 2025)

PD Dr. Jürgen Müller, **Exercise sheet 9** (10.12.2025)

(9.1) Exercise: Duality.

Let K be a field, and let \mathbf{vec}_K be the category of finite-dimensional K -vector spaces, having object set $\text{Ob}(\mathbf{vec}_K) := \{K^n; n \in \mathbb{N}_0\}$, and having the set $\text{Hom}_K(?, ?)$ of all K -linear maps as morphisms.

a) Show that \mathbf{vec}_K is a category indeed. Moreover, show that it is **skeletal**, that is its objects are pairwise non-isomorphic.

b) Show that assigning $V \mapsto V^* := \text{Hom}_K(V, K)$ and

$$\text{Hom}_K(V, W) \rightarrow \text{Hom}_K(W^*, V^*): \varphi \mapsto (\varphi^* : \lambda \mapsto \lambda \circ \varphi)$$

defines a contravariant **duality (endo-)**functor ${}^* : \mathbf{vec}_K \rightarrow \mathbf{vec}_K$.

c) Show that the **biduality functor** ** is isomorphic to the identity functor.

(9.2) Exercise: Locally constant sheaves.

Let \mathcal{V} be a topological space.

a) Given a presheaf \mathcal{F} on \mathcal{V} , show that the following assertions are equivalent:

i) For any open subset $\emptyset \neq \mathcal{U} \subseteq \mathcal{V}$ the restriction map $\mathcal{F}(\mathcal{V}) \rightarrow \mathcal{F}(\mathcal{U})$ is bijective.

ii) \mathcal{F} is a **constant sheaf**, that is there is a set A , equipped with the discrete topology, such that $\mathcal{F}(\mathcal{U})$ consists of the locally constant functions $\mathcal{U} \rightarrow A$.

iii) \mathcal{F} is a **locally constant sheaf**, that is any point $v \in \mathcal{V}$ has an open neighborhood $\mathcal{U} \subseteq \mathcal{V}$ such that the restriction $\mathcal{F}|_{\mathcal{U}}$ is a constant sheaf.

b) Let \mathcal{V} be connected, and let \mathcal{F} be a constant sheaf on \mathcal{V} such that $|\mathcal{F}(\mathcal{V})| \geq 2$. Show that \mathcal{V} is irreducible.

c) Let \mathcal{F} be a constant sheaf on \mathcal{V} , and let \mathcal{F}_0 be the **constant presheaf** on \mathcal{V} with value $A := \mathcal{F}(\mathcal{V})$, that is $\mathcal{F}(\mathcal{U})$ consists of the constant functions $\mathcal{U} \rightarrow A$, for any open subset $\mathcal{U} \subseteq \mathcal{V}$. Show that \mathcal{F} has the following universal property:

There exists a morphism of presheaves $\psi : \mathcal{F}_0 \rightarrow \mathcal{F}$, such that for any morphism of presheaves $\varphi_0 : \mathcal{F}_0 \rightarrow \mathcal{G}$, where \mathcal{G} is a sheaf, there is a unique morphism of sheaves $\varphi : \mathcal{F} \rightarrow \mathcal{G}$ such that $\varphi_0 = \psi \cdot \varphi$. (\mathcal{F} is called the **sheafification** of \mathcal{F}_0 .)

(9.3) Exercise: Direct image sheaves.

a) Let \mathcal{V} be a topological space, and let \mathcal{A} be a category. Show that $\mathbf{PSh}(\mathcal{V}, \mathcal{A})$, with objects consisting of the presheaves on \mathcal{V} with values in \mathcal{A} , and having all morphism of presheaves as morphisms, is a category. Similarly, show that $\mathbf{Sh}(\mathcal{V}, \mathcal{A})$, with objects consisting of the sheaves on \mathcal{V} with values in \mathcal{A} , and having all morphism of presheaves as morphisms, is a category.

b) Let \mathcal{W} be a topological space, let $\varphi : \mathcal{V} \rightarrow \mathcal{W}$ be continuous, and let $\mathcal{F} \in \mathbf{PSh}(\mathcal{V}, \mathcal{A})$. Show that for any $U' \subseteq U \subseteq \mathcal{W}$ open letting

$$U \mapsto \mathcal{F}(\varphi^{-1}(U)) \quad \text{and} \quad \rho_{U' \subseteq \mathcal{W}}^U := \rho_{\varphi^{-1}(U') \subseteq \mathcal{V}}^{\varphi^{-1}(U)}$$

defines a presheaf $\varphi_* \mathcal{F} \in \mathbf{PSh}(\mathcal{W}, \mathcal{A})$, being called the **direct image** of \mathcal{F} under φ . Show that this gives rise to a functor $\varphi_* : \mathbf{PSh}(\mathcal{V}, \mathcal{A}) \rightarrow \mathbf{PSh}(\mathcal{W}, \mathcal{A})$.

Moreover, if \mathcal{F} is a sheaf, show that $\varphi_* \mathcal{F}$ is a sheaf as well. Conclude that this gives rise to a functor $\varphi_* : \mathbf{Sh}(\mathcal{V}, \mathcal{A}) \rightarrow \mathbf{Sh}(\mathcal{W}, \mathcal{A})$.